
Integrated weed management

Integrated Weed Management: Rationale and Strategies

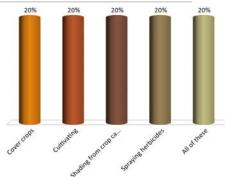
Sarah Lancaster

Assistant Professor and Weed Science Extension Specialist Kansas State University

K·STATE

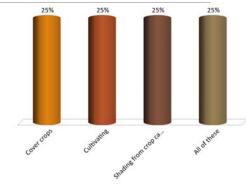
Integrated weed management

Chemical


Sequential Residual Multiple sites of action Well-timed

Cultural Good agronomic practices Crop rotation Seeding date Row spacing Plant populations

Physical	
Tillage	
Cover crops	


Which of the following IWM practices do you use most?

- A. Cover crops
- B. Cultivating
- C. Shading from crop canopy
- D. Spraying herbicides
- E. All of these

Which of the following IWM practices do you use most?

- A. Cover crops
- B. Cultivating
- C. Shading from crop canopy
- D. All of these

K-STATE

Why integrated weed management?

Herbicide resistance

Sustainability

Herbicide resistance

K·STATE

Herbicide tolerance

The inherited ability of a species to survive and reproduce following herbicide application

- Naturally occurring trait
- Expected result due to herbicide selectivity

K-STATE

Herbicide selectivity

Application rate

Placement

Absorption and translocation

Metabolism or altered metabolism

Altered site of action

Herbicide resistant weeds in Kansas

	Palmer amaranth	Waterhemp	Kochia	Marestail
ALS inhibitors Group 2 (Classic, Harmony, Pursuit)	Х	Х	Х	Х
Plant growth regulators Group 4 (2,4-D, dicamba, Starane Ultra)	Х		Х	
PSII inhibitors Group 5 (atrazine)	Х	Х	Х	
EPSPS inhibitor Group 9 (glyphosate)	Х	Х	Х	Х
PPO inhibitors Group 14 (Cobra, Blazer)	?	Х		
HPPD inhibitors Group 27 (Armezon, Callisto, Laudis)	Х			
Multiple resistance	3- & 5-way (7-way?)	2-way	2- & 4-way	

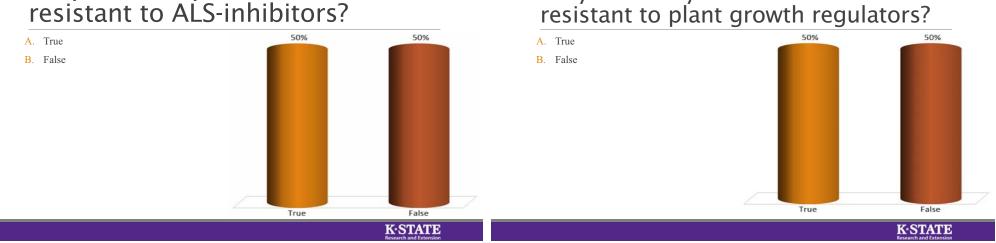
Herbicide options for piqweed control

K·STATE

K·STATE

Herbicide options for pigweed control

Herbicide resistance


• Herbicide resistance is a heritable trait

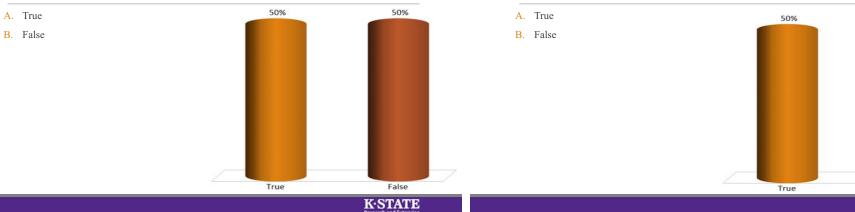
original plant population

The ability of a formerly susceptible plant population to survive herbicide doses greater than those that were once used to control the

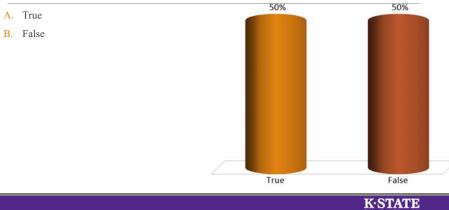
Pre Corn • Atrazine • Flumioxizan • Valor, Fierce • Isoxaflutole • Balance Flexx • Pyroxasulfone • Zidua • Rimsulfuron+thifensulfuron • Crusher	 Pyroxasulfone Zidua 	Corn Atrazine Dicamba Distinct Mesotrione Callisto Tembotrione Laudis Tolpyralate Shieldx 	temergence Soybean • Aciflurofen • Blazer • Fomesafen • Reflex • Lactofen • Cobra • Thifensulfuron • Harmony • Imazethapyr • Pursuit	Corn <u>- Atrazine</u> • Flumioxizan • Valor, Fierce • Isoxaflutole • Balance Flexx • Pyroxasulfone • Zidua • Rimsulfuron+thifensulfuror • Grusher	Preplant Soybean - Chloransulam - Fictuate - Flumioxizin - Valor - Imazaquin - Seepter - Imazathapyr - Pursuit - Pyroxasulfone - Zidua	Corn <u>- Atrazine</u> • Dicamba • Distinct <u>- Mesotrione</u> <u>- Callisto</u> • <u>Tembotrione</u> <u>- Laudis</u> • Tolpyralate • Shieldx <u>- Topramazone</u>	stemergence Soybean - Aciflurofon - Biazer - Fomesafen - Reflex - Lactofon - Lactofon - Cobra - Thifensulfuron - Harmony - Harmony - Imazamox
	 Pyroxasulfone 	 Shieldx 	 Imazethapyr 		 Pyroxasulfone 	 Shieldx 	<mark>← Imazethapyr</mark> ← Pursuit
			K·STATE Research and Extension				K-STAT Research and Extensi

Do you think you have weeds resistant to ALS-inhibitors?

Do you think you have weeds


Do you think you have weeds resistant to PPO inhibitors?

50%


False

K·STATE

Do you think you have weeds resistant to triazines?

Do you think you have weeds resistant to HPPD inhibitors?

CROSS RESISTANCE

Single mechanism confers resistance to multiple herbicides

Negative cross resistance – genetic change that causes resistance to one herbicide causes 'hypersusceptibility' to another

MULTIPLE RESISTANCE

Multiple mechanisms confer resistance to multiple herbicides

K·STATE

Cross resistant common cocklebur

Multiple resistant Palmer amaranth

Nontreated

Chlorsulfuron (Glean) Glyphosate Atrazine

Lactofen (Cobra)

Mesotrione (Callisto)

2.4-D

Pyrasulfotole + bromoxynil (Huskie)

K·STATE

Causes of resistance

TARGET-SITE MUTATION

NON-TARGET-SITE MUTATION

One gene

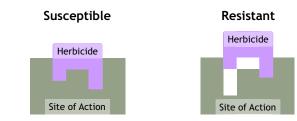
Develops faster

Most cases observed in

- ACCase inhibitors (G1)
- ALS inhibitors (G2)
- PSII inhibitors (G5)

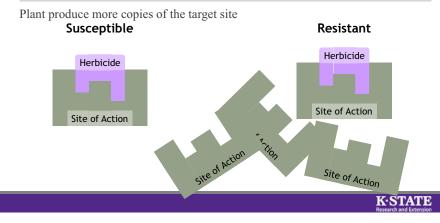
Develops slower

- Begins with low degree of resistance
- Cross resistance more likely


Most frequent form observed in

- ACCase inhibitors
- ALS inhibitors
- EPSPS inhibitor

K·STATE


Altered Site of Action

Plant changes target site

K·STATE

Increased Protein Expression

Causes of resistance

TARGET-SITE MUTATION

One gene

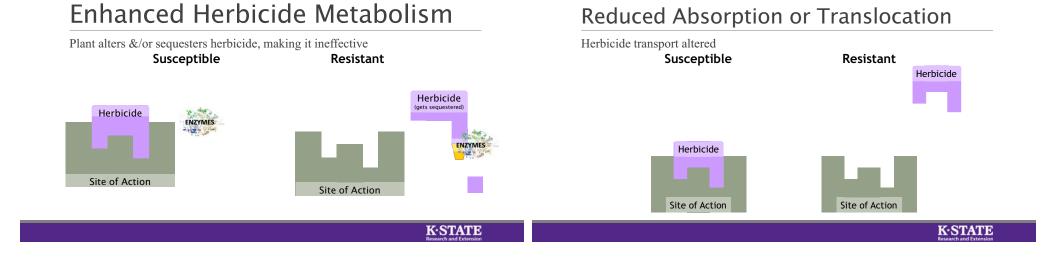
Develops faster

Most cases observed in

- ACCase inhibitors (G1)
- ALS inhibitors (G2)
- PSII inhibitors (G5)

NON-TARGET-SITE MUTATION

> 1 gene


Develops slower

• Begins with low degree of resistance

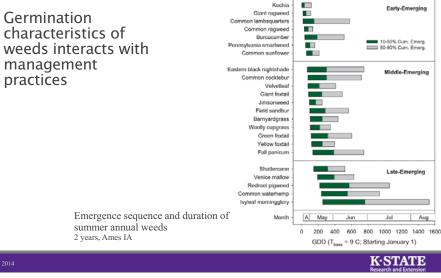
Cross resistance more likely

Most frequent form observed in

- ACCase inhibitors
- ALS inhibitors
- · EPSPS inhibitor

Best Management Practices

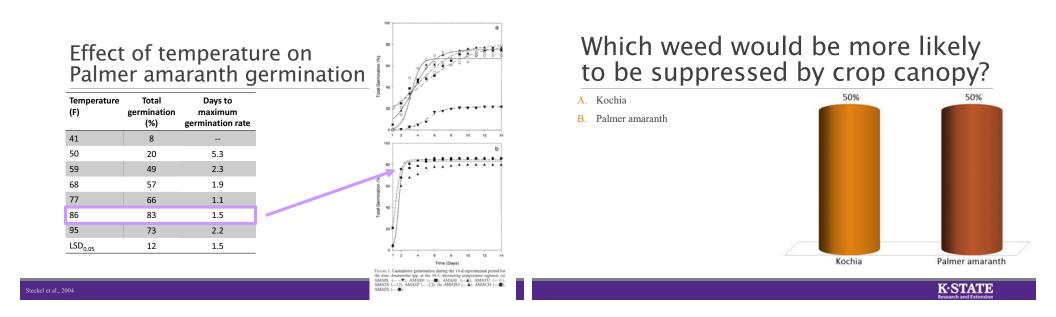
for Herbicide Resistance

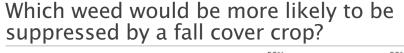

Scouting

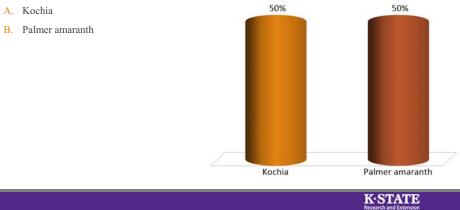
Get a representation of the whole field

- ° 5-10 stops, spread throughout
- At each stop, walk 10 paces and record the following:
- $\circ~$ Weed species present ID is critical
- Life stage or height of weeds
- Lifecycle (summer annual, winter annual, perennial)
- $\circ\,$ Severity of the infestation based on number of plants (Low, medium, high)

Before planting, before herbicide, after herbicide






Kochia emergence in Kansas

Site	Year	Field	Date 10%	10%	50%	90%
				Grov	wing Degree	Days
Garden City	2010	NT	3/30	245	425	2369
Garden City	2011	NT	3/21	266	436	2400
Garden City	2011	Т	3/21	279	443	1473
Hays	2010	Т	3/10	173	300	590
Hays	2010	NC	3/24	23	148	430
Hays	2011	Т	1/28	43	168	444
Hays	2011	NC	2/6	96	223	511
Manhattan	2011	NC	3/3	115	237	500

Werle et al., 2014

Integrated pigweed management in Kansas

2 crops, 2 years, 3 locations

Cover crop, row-width, cultivation, herbicides

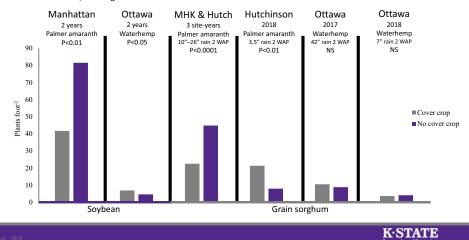
K-STATE Research and Extension

Integrated pigweed management in Kansas

Herbicide program provided $\geq 97\%$ weed control

Row width reduced pigweed growth in some environments

Cover crop generally suppressed pigweeds



K·STATE

Row width effects on pigweed density 8 WAP

Cover crop effects on pigweed density 8 WAP

Understanding sites of action

Mode of action

• How the herbicide affects the plant

Amino acid synthesis inhibitor

Site of action

- Specific binding site the herbicide interferes with
- EPSPS inhibition
- Group 9

Chemical family

- Elements in the molecule
- Glycine

Herbicide sites of action

Group	Site of Action (Mode of Action)
1	ACCase inhibitors (Lipid synthesis inhibitors)
2, 9	ALS inhibitors, EPSP Synthase inhibitor (Amino acid synthesis inhibitors)
3	Microtubule inhibitors (Seedling root growth inhibitors)
4, 19	Synthetic auxins, Auxin transport inhibitors (Growth regulators)
5, 6, 7	PS II inhibitors-3 unique sites of action (Photosynthesis inhibitors)
8, 15, 16	Lipid synthesis inhibitors, Long-chain fatty acid inhibitors, Site unknown (Seedling shoot growth inhibitors)
10	Glutamine synthetase inhibitor (Nitrogen metabolism inhibitor)
12, 13, 27	PDS inhibitor, DOXP inhibitor, HPPD inhibitors (Pigment inhibitors)
14, 22	PPO inhibitors, PSI electron diverter (Cell membrane disruptors)
17	Nucleic acid inhibitor (Undefined)

K-STATE

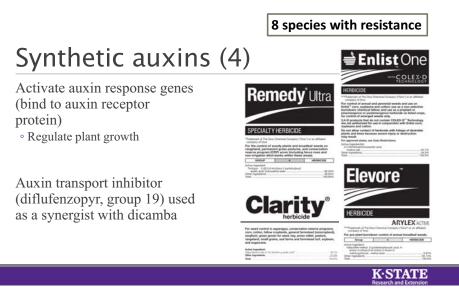
49 species with resistance

ALS Inhibitors (2)

Inhibit acetolactate synthase (aka acetohydroxy acid synthase)

• Necessary to produce branched chain amino acids (valine, leucine, isoleucine)

K·STATE


• Purple veins – dicots • "Bottlebrush" roots

yellow,

Symptoms in 3-14 d

K·STATE

Synthetic auxin injury to corn and soybean

IMAGE D PETERSON

Symptoms appear in 7-14 days

- Bent/twisted stems and petioles
- Misshapen leaves
- Short/thickened roots

IMAGE: D. PETERSOI

26 species with resistance

Photosynthesis Inhibitors (5)

Bind to D1 protein in PSII

- ° Blocks electron transport
- Stops CO2 fixation, ATP & NADPH production
- Reactive oxygen and chlorophyll form, chlorophyll lost, reactive species cause lipid peroxidization, which causes leaky membranes (with 5-10 h)

K-STATE Research and Extension

Triazine injury to soybean

Symptoms appear first on older leaves, death in 5-10 days

- Leaf tip & margin necrosis
- Interveinal chlorosis

K-STATE

Callisto injury to grain sorghum

IMAGE: D. PETERSON

Symptoms include white/creamy colored leaves • AKA "bleachers"

K·STATE

GE: D. PETERSON

4 species with resistance

PPO inhibitors (14)

Inhibit protoporphyrinogen oxidase

- Necessary to produce chlorophyll
- Accumulated protoporphyrin IX results in formation of reactive oxygen and lipid peroxidation

Sharpen Powered by Kixor® Herbicide

For use in selected agricultural crops

Herbicide For Use Only by Individu And/or Licensed as Pest EPA Reg. No. 279-3220 Active Ingredient: (1.0) EPA Est. 279-4L

FOR CONTROL AND/OR SUPPRESSION OF CERTAI VERDS IN CLOVER, COTTON, DRY BEASSION OF CER WEEDS IN CLOVER, COTTON, DRY BEANS, FIE CORN: FIELD PEAS: FLAX, LENTILS, PEANUT, SOYBEAN, SUGARCANE, SUNFLOWER AND SAFFLOWER, SWEET POTATO, WHEAT, FALLOY LAND AND TO MAINTAIN BARE GROUND ON NON, ORD BEAS OF CHAINS -CROP AREAS OF

K·STATE

Cobra and Reflex injury on soybeans

Symptoms appear in 3 days

- Bronzing, necrosis
- Drawstring leaves

IMAGE: D. PETERSON

K·STATE

3 species with resistance

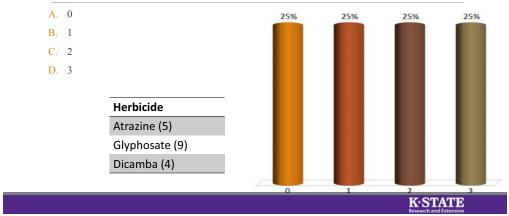
Long – chain Fatty acid Inhibitors (15)

Interfere with very long chain fatty acid synthesis

A selective residual herbicide for use in agricultural crops

Active Ingredient: pyroxasulfone: 3-[[[5-(difluoromethoxy)-1-methyl-3-(trifluoromethyl)-	
1H-pyrazol-4-y[methy]suifony[-4,5-dihydro-5,5-dimethylsoxazole	85.0%
Other Ingredients:	15.0%
Total:	100.0%

Chloroacetamide injury to grain sorghum and soybean


Grasses that emerge may have buggy-whipping; broadleaf plants stunted, 'drawstring' leaves, dark green • Plants will germinate

Multiple effective sites of action glyphosate + ALS-resistant Palmer amaranth

Herbicide	Timing	Effective sites
Authority XL (2 + 14)		
Glyphosate (9)	PRE	2
2,4-D (4)		
Tavium (4 + 15)	FDOST	2
Glyphosate (9)	EPOST	2

If you have glyphosate and atrazine-resistant kochia, how many effective modes of action are you using?

Which of the following do you practice in your herbicide program?

- A. Rotating herbicide groups from year to year
- B. Rotating herbicide groups within a year
- C. Mixing groups within an application
- D. More than one of these

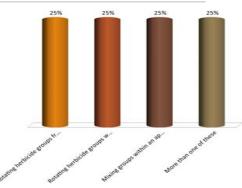


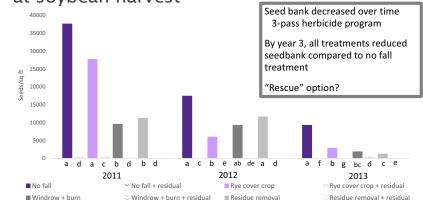
Table 3. Years until resistance occurs (first year that crop yields fall below 75% of maximum, which is equivalent to weed densities exceeding 200 m⁻³ for 15 different rotation and mixture (M) strategies (rows) and four initial allele frequencies (1.0.1 and 100 times the baseline frequencies shown in Table 1) and three different genetic scenarios: GS1(fitness penalties and no negative cross-resistance). GS2 (fitness penalties and no progratice cross-resistance). GS2 (fitness penalties and no more than the source of the sourc

		G51			G52			G53		
	frequency			frequency			frequency			
Herbicide use patterns	1	0.1	100	1	0.1	100	1	0.1	100	Rani
1111	16	20	8	16	20	9	14	18	7	6
2222	8	9	4	8	9	4	7	9	4	7
3333	8	9	4	8	9	4	7	9	4	7
4444	8	9	4	8	9	4	7	9	4	7
1114	22	29	11	22	29	11	18	23	9	4
1234	18	23	10	19	23	10	15	19	7	5
12141314	32	N	14	35	N	16	24	31-33	10	2
124134	26	32	12	26	33	12	20	26	9	3
11241134	32	50	14	34	50	16	24	30	10	2
111422243334	21	N	10	21	N	10	18	22	9	4
M12,M13,4	N	N	32-38	N	N	N.	51-N 28%	N	17-18	1
M12,M13,1,4	N	N	25-27	N	N	44	N	N	16	1
Trifluralin first 'tr1st'	32	N	11	34	N	11	22	50	9	2
2323*	8	10	5	8	10	5	7	9	4	6 ^a
234234*	13	16	7	13	16	7	10	13	5	5*
24342	15	19	7	15	19	7	12	15	6	34
M73 M73 4 ³	16	10.73	R	16	10.25	8	13	14-17	6.7	- 28
M12,M13,4 ^a	28-44	N	15	N	N	33	17-20	22-N 35%	9	14
CR-234234234114234*	14	20	7	19	23	7	11	14	5	-4*

1, trifluralin (dinitroaniline, G3); 2, prosulfocarb + S-metolachlor (thiocarbamate + chloroacetamide, G8 + 15); 3, pyroxasulfone (pyrazole, G15); 4, propyzamide (benzamide, G3).

the single results reported, our evise meriangle in eported (e.g., 25–27) means resistance occurred as size as 27 years and as early as 25 years) and, it relevant, the percentage of replicate runs in which resistance did not occur within 60 years of simulation. The rank column indicates the relative efficacies of the strategy in delaying resistance under GS1, which is not affected by allele frequency GS3 versus GS1 [1 = most effective; 7 = least effective; 80 of values indicate where GS2 makes a difference versus GS1. * These simulations assumed existing trifluralin resistance and are ranked separately

K·STATE


Modeling the effects of herbicide rotation on Best Understand the biolog Emphasize cultural practice trifluralin-resistant annual ryegrass of the weeds present that suppress weeds by using Management orog competitiveness, meaning radid-growing bushy crops do a better Practices) Use a diversified approach toward weed management job of suppressing woods than slow-growing upright Focut on preventing weed 8 teed production and reducing crops that produce few leave for Herbicide Resistance the number of used Lends in the Soil Seedbank. 9 Use mechanical and 9 2 shoot inhibitor fb shoot inhibitor biological management practices where appropria Weeds m⁻² 0.1 1 1 3 Plant into weed-free fields and then keep fields as 2 shoot inhibitor fb shoot inhibitor fb root inhibitor 2 shoot inhib fb root inhib fb shoot inhib fb root inhib weed-free as possible. Prevent field-to-field and 2 shoot inhib+shoot inhib fb 2 shoot inhib+shoot inhib fb root inhib within-field movement Tri+2 shoot inhib fb tri+shoot inhib fb root inhib A Plant weed-free crop s of used teed or vegetative reproductive Structures (2 shoot inhib fb shoot inhib fb root inhib)x3 then tri fb tri fb root inhib fb 2 shoot inhib fb shoot inhib fb root inhib 5 Scout fields routin 0.01 Manage weed seed at harvest and after harvest to prevent a buildup of the weed Seedbar 6 Use multiple herbicide modes of action (MBAs) that are effective against the Prevent an influe most troublesome weeds or those most prone of weeds into the field by managing 5 0 10 20 30 40 to herbicide resistance. field borders Year 7 Apply the labeled herbicide rate at recommended weed sizes. - 2929 ---- 234234 + 2434 **K·STATE**

Pigweed seed retention at soybean maturity

	State	Seed Rete	ention (%)
		2013	2014
	AR	99.98 <u>+</u> 0.00	99.85 <u>+</u> 0.05
	IL	99.95 <u>+</u> 0.03	
Palmer amaranth	NE	98.89 <u>+</u> 0.23	99.93 <u>+</u> 0.02
amarantin	MO	99.98 <u>+</u> 0.00	99.67 <u>+</u> 0.20
	TN	99.96 <u>+</u> 0.01	
	IL	99.98 <u>+</u> 0.01	94.98 <u>+</u> 0.94
14/-+	NE	99.99 <u>+</u> 0.00	99.63 <u>+</u> 0.10
Waterhemp	MO	100.00 <u>+</u> 0.00	99.84 <u>+</u> 0.04
	WI	99.96 <u>+</u> 0.01	98.80 <u>+</u> 0.30

K·STATE

HWSC effects on Palmer amaranth seedbank at soybean harvest

Means within a year with similar letters are simila

-	bur	ning	Chaff tr	amlining	Cha	ff cart	Bale-dire	ct system	_
Cropping region and zone	Adoption ^a	Crop area ^b	Adoption	Crop area	Adoption	Crop area	Adoption	Crop area	Total adoption
Northern	4	23	13	77	1	78	1	15	19
Qld Central	-	-	18	88	4	78	-	-	22
NSW NE/QId SE	-	-	18	71	-		-	-	18
NSW NW/Qld SW	11	23	4	75	-	-	2	15	17
Southern	28	23	6	70	1	63	4	27	39
NSW Central	12	30	2	100	-	-	2	10	16
NSW Vic. Slopes	33	29	12	63	-	-	12	14	57
SA Midnorth-Lower Yorke Eyre	31	15	-	-	4	50	-	-	35
SA Vic Bordertown- Wimmera	38	13	2	100	-	-	4	45	44
SA Vic Mallee	21	18	6	39	-	-	6	37	33
Vic. High Rainfall & Tas.	33	34	12	82	2	90	2	60	49
Western	51	30	4	86	7	59	1	13	63
WA Central	56	25	7	70	13	57	2	5	78
WA Eastern	45	33	4	90	-	-	-	-	49
WA Sandplain-Mallee	33	23	4	100	9	73	2	20	48
WA Northern	75	36	3	100	8	47	-	-	86
National average	30	26	7	76	3	61	3	25	43

Grower adoption of HWSC in Australia

Wrap up

Various forms of herbicide resistance are common in Kansas in multiple species

Using cultural or mechanical weed management can improve activity of herbicides and reduce selection pressure leading to herbicide resistant weed populations

Mixing multiple herbicide groups is more effective than rotating herbicide groups

Consider practices to reduce deposits to weed seedbank

K·STATE

15 species with resistance

ACCase Inhibitors (1)

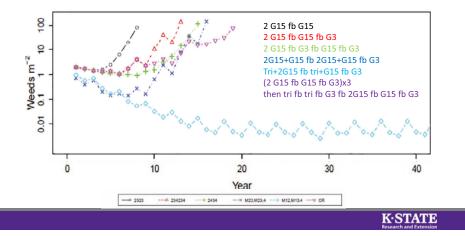
Inhibit acetyl Coenzyme A carboxylase in grasses

- Required for lipid synthesis within the plant
- Prevents cell membrane development

DuPont [™] As	sure® II		
HERBICIDE			
_	GROUP	1	HERBICIDE
Emultifiable Concentrate			
Active Ingredient			By Weight
Quintofop P-ethyl Ethyl(R)-3-[4-(6-chlomquinesalin-3-ylosy)- p	phenosy propianate		10.75*
Other Ingredients			89.7%
TOTAL			000.0%

K-STATE

ACCase inhibitor injury to corn


Symptoms start in 2-4 days, plant death takes up to 7 days

- Susceptible plants stop growing, leaves turn purplish then necrotic, leaf sheaths fall away
- Whorl easily removed from plant

K STATE

Modeling the effects of herbicide rotation on trifluralin-resistant annual ryegrass

